Adaptive finite element method for elliptic optimal control problems: convergence and optimality

نویسندگان

  • Wei Gong
  • Ningning Yan
چکیده

In this paper we consider the convergence analysis of adaptive finite element method for elliptic optimal control problems with pointwise control constraints. We use variational discretization concept to discretize the control variable and piecewise linear and continuous finite elements to approximate the state variable. Based on the well-established convergence theory of AFEM for elliptic boundary value problems, we rigorously prove the convergence and quasi-optimality of AFEM for optimal control problems with respect to the state and adjoint state variables, by using the so-called perturbation argument. Numerical experiments confirm our theoretical analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L Cost Functional∗

Abstract. Semilinear elliptic optimal control problems involving the L1 norm of the control in the objective are considered. Necessary and sufficient second-order optimality conditions are derived. A priori finite element error estimates for piecewise constant discretizations for the control and piecewise linear discretizations of the state are shown. Error estimates for the variational discret...

متن کامل

Convergence of Goal-oriented Adaptive Finite Element Methods for Nonsymmetric Problems

In this article we develop convergence theory for a class of goal-oriented adaptive finite element algorithms for second order nonsymmetric linear elliptic equations. In particular, we establish contraction and quasi-optimality results for a method of this type for second order Dirichlet problems involving the elliptic operator Lu = ∇ · (A∇u)− b · ∇u− cu, with A Lipschitz, almost-everywhere sym...

متن کامل

Finite Element Approximation of Elliptic Dirichlet Optimal Control Problems

In this paper, we present a priori error analysis for the finite element discretization of elliptic optimal control problems, where a finite dimensional control variable enters the Dirichlet boundary conditions. The analysis of finite element approximations of optimization problems governed by partial differential equations is an area of active research, see, e.g., [1, 12, 17, 18]. The consider...

متن کامل

Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional

Abstract. Semilinear elliptic optimal control problems involving the L1 norm of the control in the objective are considered. Necessary and sufficient second-order optimality conditions are derived. A priori finite element error estimates for piecewise constant discretizations for the control and piecewise linear discretizations of the state are shown. Error estimates for the variational discret...

متن کامل

Optimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems

A local multilevel product algorithm and its additive version are analyzed for linear systems arising from the application of adaptive finite element methods to second order elliptic boundary value problems. The abstract Schwarz theory is applied to verify uniform convergence of local multilevel methods featuring Jacobi and Gauss-Seidel smoothing only on local nodes. By this abstract theory, co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2017